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Abstract. We argue that due to isospin and U -spin invariance of strong low-energy interactions the S-wave
scattering lengths a0

0 and a1
0 of K̄N scattering with isospin I = 0 and I = 1 satisfy the low-energy theorem

a0
0 +3a1

0 = 0 valid to leading order in chiral expansion. In the model of strong low-energy K̄N interactions
at threshold (Eur. Phys. J. A 21, 11 (2004)) we revisit the contribution of the Σ(1750) resonance, which
does not saturate the low-energy theorem a0

0 + 3a1
0 = 0, and replace it by the baryon background with

properties of an SU(3) octet. We calculate the S-wave scattering amplitudes of K−N and K−d scattering
at threshold. We calculate the energy level displacements of the ground states of kaonic hydrogen and
deuterium. The result obtained for kaonic hydrogen agrees well with recent experimental data by the
DEAR Collaboration. We analyse the cross-sections for elastic and inelastic K−p scattering for laboratory
momenta 70MeV/c < pK < 150MeV/c of the incident K−-meson. The theoretical results agree with the
available experimental data within two standard deviations.

PACS. 11.10.Ef Lagrangian and Hamiltonian approach – 11.55.Ds Exact S matrices – 13.75.Gx Pion-
baryon interactions – 36.10.-k Exotic atoms and molecules (containing mesons, muons, and other unusual
particles)

1 Introduction

Recently in ref. [1] we have proposed a phenomenological
quantum field theoretic model for strong low-energy K−p
interactions at threshold for the analysis of the experimen-
tal data by the DEAR Collaboration [2,3] on the energy
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level displacement of the ground state of kaonic hydrogen,

−ε(exp)1s + i
Γ
(exp)
1s

2
= (−194± 37 (stat.)± 6 (syst.))

+ i (125± 56 (stat.)± 15 (syst.)) eV. (1.1)

According to the Deser-Goldberger-Baumann-Thirring-
Trueman formula (the DGBTT), [4], the energy level dis-
placement of the ground state of kaonic hydrogen is re-

lated to the S-wave amplitude fK
−p

0 (0) of K−p scattering
at threshold as

− ε1s + i
Γ1s
2

= 2α3µ2 fK
−p

0 (0) = 412.13 fK
−p

0 (0), (1.2)

where µ = mKmp/(mK + mp) = 323.48MeV is the
reduced mass of the K−p pair, calculated for mK =
493.68MeV and mp = 938.27MeV, and α = 1/137.036
is the fine-structure constant [5]. The theoretical accuracy
of the DGBTT formula eq. (1.2) is about 3% including
the vacuum polarization correction [6].
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For a non-zero relative momentum Q the amplitude

fK
−p

0 (Q) is defined by

fK
−p

0 (Q) =
1

2iQ

(

ηK
−p

0 (Q) e 2iδ
K−p
0 (Q) − 1

)

, (1.3)

where ηK
−p

0 (Q) and δK
−p

0 (Q) are the inelasticity and the
phase shift of the reaction K−+p→ K−+p, respectively.

The real part Re fK
−p

0 (0) of fK
−p

0 (0) defines the S-

wave scattering length aK
−p

0 of K−p scattering,

Re fK
−p

0 (0) = aK
−p

0 =
1

2
(a00 + a10), (1.4)

where a00 and a
1
0 are the S-wave scattering lengths aI0 with

isospin I = 0 and I = 1, respectively.

The imaginary part ImfK
−p

0 (0) of fK
−p

0 (0) is caused
by inelastic channels K−p → Y π, where Y π = Σ−π+,
Σ+π−, Σ0π0 and Λ0π0, allowed kinematically at thresh-
old Q = 0.

The S-wave amplitude eq. (1.3) can be represented in
the following form:

fK
−p

0 (Q) =
1

2iQ

(

ηK
−p

0 (Q) e 2iδ
K−p
0 (Q) − 1

)

=

=
1

2iQ

(

e 2iδ
K−p
B (Q) − 1

)

+e 2iδ
K−p
B (Q)fK

−p
0 (Q)R, (1.5)

where δK
−p

B (Q) is the phase shift of an elastic background

of low-energy K−p scattering and fK
−p

0 (Q)R is the con-
tribution of resonances.

In our model of strong low-energy K̄N interactions
near threshold proposed in ref. [1] the imaginary part

ImfK
0

0 (0) of the S-wave amplitude of K−p scattering is
defined by the contributions of strange baryon resonances
Λ(1405), Λ(1800) and Σ(1750). This implies that

ImfK
−p

0 (0) = ImfK
−p

0 (0)R. (1.6)

According to Gell-Mann’s SU(3) classification of hadrons,
the Λ(1405) resonance is an SU(3) singlet, whereas the
resonances Λ(1800) and Σ(1750) are components of an
SU(3) octet [5].

The real part Re fK
−p

0 (0) of the S-wave amplitude of
K−p scattering at threshold

Re fK
−p

0 (0) = Re fK
−p

0 (0)R +Re f̃K
−p

0 (0) (1.7)

is defined by the contribution of i) the strange baryon

resonances Re fK
−p

0 (0)R in the s-channel of low-energy
elastic K−p scattering, ii) the exotic four-quark (or
KK̄ molecules) scalar states a0(980) and f0(980) in
the t-channel of low-energy elastic K−p scattering and
iii) hadrons with non-exotic quark structures, i.e. qq̄
for mesons and qqq for baryons, where q = u, d or s

quarks. The contributions of exotic mesons and non-exotic

hadrons we denote as Re f̃K
−p

0 (0).
According to ref. [7], we describe strange baryon res-

onances as elementary particle fields coupled to octets
of low-lying baryons B = (N,Λ0, Σ,Ξ) and pseu-
doscalar mesons P = (π,K, K̄, η(550)). The effective phe-
nomenological low-energy Lagrangians of these interac-
tions are [1]:

LΛ1BP (x) = g1Λ̄
0
1(x) tr{B(x)P (x)}+H.c.,

LB2BP (x) =
1√
2
g2 tr{{B̄2(x), B(x)}P (x)}

+
1√
2
f2tr{[B̄2(x), B(x)]P (x)}+H.c., (1.8)

where g1, g2 and f2 are phenomenological coupling con-
stants, Λ0

1(x) and B2(x) are interpolating field operators
of the singlet Λ(1405) and octet of strange baryon reso-
nances, respectively. The interactions of resonances with
the meson-baryon pairs K̄N , Y π and Y η(550), where
Y = Σ±, Σ0 or Λ0, are given by

LΛ0
1
BP (x) = g1 Λ̄

0
1(x)(

~Σ(x) · ~π(x)− p(x)K−(x)

+n(x)K̄0(x) +
1

3
Λ0(x)η(x)) + H.c.,

LΛ0
2
BP (x) =

g2√
3
Λ̄0
2(x)(

~Σ(x) · ~π(x)− Λ0(x)η(x))

+
g2 + 3f2

2
√
3

Λ̄0
2(x) (p(x)K

−(x)

−n(x)K̄0(x)) + H.c.,

LΣ0
2
BP (x) = f2 Σ̄

0
2(x) (Σ

−(x)π+(x)−Σ+(x)π−(x))

+
g2√
3
Σ̄0
2(x) (Λ

0(x)π0(x) +Σ0(x)η(x))

+
g2 − f2

2
Σ̄0
2(x) (−p(x)K−(x)

−n(x)K̄0(x)) + H.c.,

LΣ−
2
BP (x) = f2 Σ̄

−
2 (x)(Σ−(x)π0(x)−Σ0(x)π−(x))

+
g2√
3
Σ̄−
2 (x)Λ0(x)π−(x)− 1√

2
(g2 − f2)

× Σ̄−
2 (x)n(x)K−(x) + H.c. (1.9)

As has been pointed out in ref. [7], the inclusion of the
Λ(1405) resonance as an elementary particle field does not
contradict ChPT by Gasser and Leutwyler [8] and allows
to calculate the low-energy parameters of K̄N scattering
to leading order in Effective Chiral Lagrangians.

Using the effective Lagrangians eq. (1.9) we obtain the
S-wave amplitudes of inelastic channels of K−p scattering
at threshold f(K−p → Y π), where Y π = Σ∓π±, Σ0π0

and Λ0π0. The theoretical cross-sections σ(K−p → Y π)
for these reactions satisfy the experimental data [9]

see eqs. (1.10) on the next page

with an accuracy of about 6% and the constraint that the
Λ(1800) resonance decouples from theK−p pair that gives
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γ =
σ(K−p→ Σ−π+)

σ(K−p→ Σ+π−)
= 2.360± 0.040,

Rc =
σ(K−p→ Σ−π+) + σ(K−p→ Σ+π−)

σ(K−p→ Σ−π+) + σ(K−p→ Σ+π−) + σ(K−p→ Σ0π0) + σ(K−p→ Λ0π0)
= 0.664± 0.011,

Rn =
σ(K−p→ Λ0π0)

σ(K−p→ Σ0π0) + σ(K−p→ Λ0π0)
= 0.189± 0.015 (1.10)

f2 = −g2/3. This result is obtained without the specifi-
cation of the numerical values of the coupling constants
g1 and g2 and the masses of resonances, but using only
physical masses of interacting particles for the calculation
of phase volumes. For f2 = −g2/3 the S-wave amplitudes
f(K−p→ Y π) can be defined by

f(K−p→ Σ−π+) = +
1

4π

µ

mK−

√

mΣ−

mp

(

− A+
1

2
B
)

,

f(K−p→ Σ+π−) = +
1

4π

µ

mK−

√

mΣ+

mp

(

− A− 1

2
B
)

,

f(K−p→ Σ0π0) = − 1

4π

µ

mK−

√

mΣ0

mp
A,

f(K−p→ Λ0π0) = − 1

4π

µ

mK−

√

mΛ0

mp

√
3

2
B, (1.11)

where A = − 6.02 fm is the contribution of the Λ(1405)
resonance, calculated for g1 = 0.91 and mΛ(1405) =
1405 MeV [1].

The parameter B describes the contribution of the
baryon resonance octet. Unfortunately, in ref. [1] we have
exaggerated the role of the Σ(1750) resonance in strong
low-energy K̄N interactions at threshold. The contribu-
tion of the Σ(1750) resonance with the recommended val-
ues of its parameters does not define B correctly. More
definitely the contribution of the Σ(1750) resonance does
not saturate the sum rule eq. (2.13), which is the conse-
quence of the low-energy theorem a00 + 3 a10 = 0 eq. (2.8).

Therefore, instead of the assertion that B is caused
by the contribution of the Σ(1750) resonance we argue
that B is defined by a contribution of a baryon background
with a property of an SU(3) octet and quantum numbers
of the Λ(1800) and Σ(1750) resonances. The former is
important for the correct description of the experimental
data eq. (1.10).

Using the relation between the S-wave amplitudes of
the reactions K−p→ Σ−π+ and K−p→ Σ+π−, imposed
by the experimental data eq. (1.10), we obtain the contri-
bution of the baryon background B in terms of γ, A and
the phase volumes of the final Σ−π+ and Σ+π− states.
This gives

B = 2

√
γ kΣ+π− −

√
kΣ−π+√

γ kΣ+π− +
√
kΣ−π+

(−A) = 2.68 fm, (1.12)

where kΣ+π− = 181.34MeV and kΣ−π+ = 172.73MeV
are the relative momenta of the Σ±π∓ pairs at threshold
of K−p scattering, calculated for physical masses of inter-
acting particles [5]. The phase volumes of the final Σ−π+

and Σ+π− states are equal to kΣ−π+/4π(mK +mp) and
kΣ+π−/4π(mK +mp), respectively.

The paper is organized as follows. In sect. 2 we calcu-
late the S-wave amplitudes of K−p and K−n scattering
at threshold. We show that the S-wave scattering lengths

aK
−p

0 and aK
−n

0 of K−p and K−n scattering satisfy the

low-energy theorem aK
−p

0 + aK
−n = (a00 + 3 a10)/2 = 0.

We show that in the chiral limit due to isospin invari-

ance aK
−p

0 + aK
−n = (a00 + 3 a10)/2 = −

√
6 b00 = 0, where

b00 = (aπ
−p

0 + aπ
−n

0 )/2 is the isoscalar S-wave scattering
length π−N scattering, vanishing in the chiral limit. The
low-energy theorem a00 + 3 a10 = 0 can be also derived
using invariance of strong low-energy interactions under
U -spin rotations [10]. We calculate the energy level dis-
placement of the ground state of kaonic hydrogen. The
theoretical value agrees well with the experimental data
by the DEAR Collaboration. Using the results obtained in
sect. 2 for the S-wave scattering lengths of K−N scatter-
ing and in ref. [11] we recalculate the S-wave scattering

length aK
−d

0 of K−d scattering at threshold. We calcu-
late the energy level displacement of the ground state of
kaonic deuterium. All results agree well with those ob-
tained in ref. [11]. In sect. 3 we analyse the cross-sections
for elastic and inelastic K−p scattering for laboratory mo-
menta 70MeV/c ≤ 150MeV/c of the incident K−-meson.
The theoretical cross-sections agree with the available ex-
perimental data within two standard deviations. In the
conclusion we discuss the obtained results.

2 S-wave amplitude of K−N scattering at

threshold

2.1 S-wave amplitude of K−p scattering at threshold

As has been shown in ref. [1], the imaginary part of the
S-wave amplitude of K−p scattering at threshold can be
represented by

ImfK
−p

0 (0) = ImfK
−p

0 (0)R =

=
1

Rc

(

1 +
1

γ

)

|f(K−p→ Σ−π+)|2kΣ−π+

= (0.35± 0.02) fm, (2.1)

where f(K−p→ Σ−π+) = 0.43 fm and ± 0.02 is an accu-
racy of about 6% of our description of the experimental
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data eq. (1.11). The contribution of the Λ(1405) resonance

and the baryon background to Re fK−00 (0) is equal to [1]

Re fK
−p

0 (0)R =
1

4π

µ

mK
(A+B) = (− 0.17± 0.01) fm.

(2.2)

Since the contribution Re f̃K
−p

0 (0) = (− 0.33 ± 0.04) fm,
calculated in ref. [1], is not changed, the total real part
of the S-wave amplitude of K−p scattering at threshold
amounts to

Re fK
−p

0 (0) = Re fK
−p

0 (0)R +Re f̃K
−p

0 (0)

= (− 0.50± 0.05) fm. (2.3)

Hence, for the S-wave amplitude of K−p scattering at
threshold we get

fK
−p

0 (0) = (− 0.50± 0.05) + i (0.35± 0.02) fm. (2.4)

This agrees well with the result obtained in ref. [1].

2.2 S-wave amplitude of K−n scattering at threshold

Since the K−n pair has isospin I = 1, in our model the
resonant parts of the S-wave amplitudes of elastic and
inelastic K−n scattering at threshold are described by
the contribution of the baryon background B. The imagi-

nary part ImfK
−n

0 (0) is defined by the inelastic channels
K−n → Y π with Y π = Σ−π0, Σ0π− and Λ0π−. Using
the results obtained in ref. [11] we get

Re fK−n0 (0) = Re f̃K−n0 (0) +
1

2π

µ

mK
B =

= (0.22± 0.02) +
1

2π

µ

mK
B

= (0.50± 0.02) fm,

ImfK
−n

0 (0) =
∑

Y π

|f(K−n→ Y π)|2kY π = 0.04 fm,

f(K−n→ Σ−π0) = +
1

4π

µ

mK

√

mΣ−

mp

1√
2
B = +0.11 fm,

f(K−n→ Σ0π−) = − 1

4π

µ

mK

√

mΣ0

mp

1√
2
B = − 0.11 fm,

f(K−n→ Λ0π−) = − 1

4π

µ

mK

√

mΛ0

mp

√
3

2
B = − 0.13 fm,

(2.5)

where kΣ−π0 = 181.36MeV, kΣ0π− = 183.50MeV and
kΛ0π− = 256.88MeV are the relative momenta of the pairs
Σ−π0, Σ0π− and Λ0π− at threshold of K−n scattering.
Since the contribution of the exotic scalar mesons a0(980)
and f0(980) to the S-wave scattering amplitude of K−n

scattering at threshold vanishes, Re f̃K−n0 (0) = (0.22 ±
0.02) fm is defined by low-energy interactions of non-exotic
hadrons only [11].

The S-wave amplitude of K−n scattering at threshold
is equal to

fK
−n

0 (0) = (+0.50± 0.02) + i (0.04± 0.00) fm. (2.6)

Equating fK
−p

0 (0) = (ã00+ã
1
0)/2 and f

K−n
0 (0) = ã10, where

ã00 and ã10 are complex S-wave scattering lengths of K̄N
scattering with isospin I = 0 and I = 1, we get the nu-
merical values of ã00 and ã10:

ã00 = (− 1.50± 0.05) + i( 0.66± 0.04) fm,

ã10 = (+0.50± 0.02) + i (0.04± 0.00) fm, (2.7)

where Re ã00 = a00 = (− 1.50± 0.05) fm and Re ã10 = a10 =
(+0.50± 0.02) fm.

The complex S-wave scattering length ã00 agrees well
with the scattering length obtained by Dalitz and De-
loff [12],

ã00 = (− 1.54± 0.05) + i (0.74± 0.02) fm

for the position of the pole on sheet II of the E-plane
E∗− i Γ/2 with E∗ = 1404.9MeV and Γ = 53.1MeV [12].
This corresponds to our choice of the parameters of the
Λ(1405) resonance.

We apply the complex S-wave scattering lengths
eq. (2.7) to the calculation of the energy level displace-
ment of the ground state of kaonic hydrogen. We use the
real parts of these scattering lengths a00 and a10 for the
calculation of the energy level shift of the ground state of
kaonic deuterium.

2.3 Low-energy theorem a0
0 + 3a1

0 = 0

The numerical values of the real parts of the S-wave scat-

tering lengths aK
−p

0 = (a00+a
1
0)/2 and a

K−n
0 = a10 ofK

−N
scattering satisfy the relation

aK
−p

0 + aK
−n

0 =
1

2
(a00 + 3 a10) = 0. (2.8)

This is the low-energy theorem valid in the chiral limit,
which can be derived relating the S-wave scattering
lengths of K−N scattering to the S-wave scattering
lengths of π−N scattering.

As has been shown by Weinberg [13], in the chiral limit

the S-wave scattering lengths aπ
−p

0 = (2 a
1/2
0 +a

3/2
0 )/3 and

aπ
−n

0 = a
3/2
0 of π−N elastic scattering, where a

1/2
0 and

a
3/2
0 are the S-wave scattering lengths of πN scattering

with isospin I = 1/2 and I = 3/2, obey the constraint

aπ
−p

0 + aπ
−n

0 =
2

3
(a

1/2
0 + 2a3/2) = 2 b00 = 0, (2.9)

which is caused by Adler’s consistency condition [14],
where b00 is the S-wave scattering length of πN scatter-
ing in the t-channel with isospin I = 0.

For the derivation of the low-energy theorem eq. (2.8)
it is convenient to use the K-matrix approach [15,16]. In
terms of the matrix elements of the K-matrix in the t-
channel the sum of the S-wave scattering lengths aπ

−p
0 +

aπ
−n

0 is equal to

aπ
−p

0 + aπ
−n

0 = 〈π+π−|K|p̄p+ n̄n〉

= −
√

2

3
〈I = 0|K|I = 0〉, (2.10)
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where we have taken into account the isospin properties
of the hadronic state |p̄p+ n̄n〉 and |π−π+〉. Setting

〈I = 0|K|I = 0〉 = −
√
6 b00 (2.11)

we arrive at the low-energy theorem eq. (2.9).
In terms of the matrix element of the K-matrix in the

t-channel the sum of the S-wave scattering lengths aK
−p

0 +

aK
−n

0 can be defined by

aK
−p

0 + aK
−n

0 = 〈K+K−|K|p̄p+ n̄n〉
= 〈I = 0|K|I = 0〉 = −

√
6 b00 = 0. (2.12)

This proves the low-energy theorem eq. (2.8), which is,
of course, valid only at leading order in chiral expansion.
The former becomes more obvious if one has to derive the
low-energy theorem eq. (2.8) using invariance of strong
low-energy interactions under U -spin rotations [10]. Ac-
cording to U -spin classification of the components of the
pseudoscalar octet [10], the mesons π and K transform as
components of doublets (K+, π+) and (π−,K−). This can
be allowed only in the chiral limit.

The relation eq. (2.8) can be rewritten in the form of
the sum rule

Ref̃K
−p

0 (0)+Ref̃K−n0 (0) = − 1

4π

µ

mK−
(A+3B). (2.13)

Using the numerical values Ref̃K
−p

0 (0) = − 0.33 fm,

Ref̃K−n0 (0) = 0.22 fm, A = − 6.02 fm and B = 2.68 fm,
one can show that the sum rule eq. (2.13) is fulfilled:

Ref̃K
−p

0 (0) +Ref̃K−n0 (0) = − 0.11 fm ,

− 1

4π

µ

mK−
(A+ 3B) = − 0.11 fm.

Unfortunately, the Σ(1750) resonance does not saturate
the sum rule eq. (2.13).

In our model of strong K̄N interactions at threshold
the l.h.s. of eq. (2.13) is defined by quark-hadron interac-
tions, whereas the r.h.s. of eq. (2.13) is the resonant part,
caused by the contribution of the Λ(1405) resonance A and
the baryon background B. This is to some extent a mani-
festation of quark-hadron duality pointed out by Shifman
et al. within non-perturbative QCD in the form QCD sum
rules [17]. Since the l.h.s. of eq. (2.13) can be calculated
independently of the assumption of the contribution of the
Λ(1405) resonance and the baryon background, the sum
rule eq. (2.13) places constraints on the parameters of the
Λ(1405) resonance and the baryon background calculated
at leading order in chiral expansion.

2.4 Energy level displacement of the ground state of
kaonic hydrogen

For the S-wave amplitude of K−p scattering at threshold
eq. (2.4) the energy level displacement of the ground state

of kaonic hydrogen is equal to

− ε(0)1s + i
Γ
(0)
1s

2
= 421.13 fK

−p
0 (0) = 421.13

ã00 + ã10
2

= (− 205± 21) + i (144± 9) eV. (2.14)

This result agrees well with the experimental data by the
DEAR Collaboration eq. (1.1).

As has been shown in ref. [18], the energy level shift
and width of the ground state of kaonic hydrogen acquire
the dispersive corrections, caused by the intermediate K̄0n
state on-mass shell

δDisp
S =

δεK̄
0n

1s

ε
(0)
1s

=
1

4
(a10 − a00)2 q20 = (8.6± 0.9)% ,

δDisp
W =

δΓ K̄0n
1s

Γ
(0)
1s

=
1

2π

(a10 − a00)2

ImfK
−p

0 (0) aB
ln

[

2aB
|a00 + a10|

]

= (11.1± 1.2)% , (2.15)

where q0 =
√

2µ(mK̄0 −mK− +mn −mp) = 58.35MeV,
calculated for mK̄0 −mK− = 3.97MeV and mn −mp =
1.29MeV [5] and aB = 1/αµ = 83.59 fm is the Bohr ra-
dius.

Taking into account the dispersive corrections
eq. (2.15), the energy level displacement of the ground
state of kaonic hydrogen is equal to

− ε(th)1s + i
Γ
(th)
1s

2
= (−223± 21) + i (159± 9) eV. (2.16)

As we have shown above, the S-wave scattering lengths
of K−p and K−n scattering are calculated at leading or-
der in chiral expansion and satisfy the low-energy theorem
eq. (2.8). This allows to take into account contributions
caused by next-to-leading order corrections in chiral ex-
pansion.

The most important next-to-leading order correction

in chiral expansion is the contribution of the σ
(I=1)
KN (0)-

term, given by [19]

δε
(σ)
1s =

α3µ3

2πmKF 2
K

[

σ
(I=1)
KN (0)− m2

K

4mN
i

×
∫

d4x〈p(~0, σp)|T(J4+i550 (x)J4−i550 (0))|p(~0, σp)〉
]

.

(2.17)

Here J4±i550 (x) are time components of the axial-vector

hadronic currents J4±i55µ (x), changing strangeness |∆S| =
1, FK = 113MeV is the PCAC constant of the K-

meson [5] and the σ
(I=1)
KN (0)-term is defined by [20–24]

σ
(I=1)
KN (0) =

mu +ms

4mN
〈p(~0, σp)|ū(0)u(0)

+s̄(0)s(0)|p(~0, σp)〉, (2.18)

where u(0) and s(0) are operators of the interpolating
fields of u and s current quarks [25].
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The correction δε
(σ)
1s to the shift of the energy level

of the ground state of kaonic hydrogen, caused by the

σ
(I=1)
KN (0), is obtained from the S-wave amplitude of K−p

scattering, calculated to next-to-leading order in ChPT
expansion at the tree-hadron level [19] and Current Alge-
bra [26,27] (see also ref. [20]):

4π
(

1 +
mK

mN

)

f̃K
−p

0 (0) =

mK

F 2
K

− 1

F 2
K

σ
(I=1)
KN (0) +

m2
K

4mNF 2
K

i

∫

d4x

×〈p(~0, σp)|T(J4+i550 (x)J4−i550 (0))|p(~0, σp)〉 . (2.19)

The contribution of the σ
(I=1)
KN (0)-term, −σ(I=1)

KN (0)/F 2
K ,

to the S-wave amplitude of K−p scattering in eq. (2.19)
has a standard structure [20].

Since the first term mK/F
2
K , calculated to leading or-

der in chiral expansion, has been already taken into ac-

count in ref. [1], the second term, −σ(I=1)
KN (0)/F 2

K , and the
third one define next-to-leading order corrections in chiral
expansion to the S-wave amplitude of K−p scattering at
threshold.

Taking into account the contribution δε
(σ)
1s , the total

shift of the energy level of the ground state of kaonic hy-
drogen is equal to

ε
(th)
1s = 223± 21 +

α3µ3

2πmKF 2
K

σ
(I=1)
KN (0)− α3µ3mK

8πF 2
KmN

i

×
∫

d4x〈p(~0, σp)|T(J4+i550 (x)J4−i550 (0))|p(~0, σp)〉.

(2.20)

The theoretical estimates of the value of σ
(I=1)
KN (0), car-

ried out within ChPT with a dimensional regularization
of divergent integrals, are converged around the number

σ
(I=1)
KN (0) = (200± 50)MeV [22,23]. Hence, the contribu-

tion of σ
(I=1)
KN (0) to the energy level shift amounts to

α3µ3

2πmKF 2
K

σ
(I=1)
KN (0) = (67± 17) eV. (2.21)

The total shift of the energy level of the ground state of
kaonic hydrogen is given by

ε
(th)
1s =(290±27)− α3µ3mK

8πF 2
KmN

i

×
∫

d4x〈p(~0, σp)|T(J4+i550 (x)J4−i550 (0))|p(~0, σp)〉. (2.22)

Hence the theoretical analysis of the second term in
eq. (2.22) is required for the correct understanding of the
contribution of the σI=1

KN (0)-term to the energy level shift.
Of course, one can solve the inverse problem. Indeed,

calculating the contribution of the term

α3µ3mK

8πF 2
KmN

i

∫

d4x 〈p(~0, σp)|T(J4+i550 (x)J4−i550 (0))|p(~0, σp)〉
(2.23)

in eq. (2.20) and using the experimental data on the en-
ergy level shift, measured by the DEAR Collaboration

eq. (1.1), one can extract the value of the σ
(I=1)
KN (0)-term.

2.5 Energy level displacement of the ground state of
kaonic deuterium

Using the real parts of the S-wave scattering lengths of
K−N scattering eq. (2.7) we recalculate the S-wave scat-

tering length aK
−d

0 of K−d scattering. As has been shown

in ref. [11], the S-wave scattering length aK
−d

0 is equal to

aK
−d

0 = (aK
−d

0 )EW +Re f̃ K−d0 (0), (2.24)

where (aK
−d

0 )EW is the Ericson-Weise scattering length of
K−d scattering in the S-wave state [11],

(aK
−d

0 )EW =
1 +mK/mN

1 +mK/md

1

2
(a00 + 3a10)

+
1

4

(

1 +
mK

md

)−1(

1 +
mK

mN

)2

×
(

(a10)
2 + 4a00a

1
0 − (a00)

2
)

〈

1

r12

〉

, (2.25)

where r12 is a distance between two scatterers n and p [15].
In our approach 〈1/r12〉 is defined by [11]

〈

1

r12

〉

=

∫

d3xΨ∗
d (~r )

e−mKr

r
Ψd(~r ) = 0.29mπ, (2.26)

where Ψd(~r ) is the wave function of the deuteron in the
ground state.

We would like to remind that Ericson and Weise did
not investigate the K−d scattering. They analysed only
π−d scattering [15]. However, since the structure of the
contribution, given by eq. (2.25), is very similar to that of
π−d scattering, we call such a contribution as the Ericson-

Weise scattering length (aK
−d

0 )EW, which has been derived
in ref. [11] at the quantum field theoretic level.

The term Re f̃ K−d0 (0) in eq. (2.24) is defined by the
inelastic two-body and three-body channels of the K−d
scattering at threshold. As has been shown in ref. [11], the
contribution of this term is negligible in comparison with

the Ericson-Weise scattering length (aK
−d

0 )EW. Dropping
the contribution of this term we get

aK
−d

0 = (aK
−d

0 )EW = − 0.47 fm. (2.27)

Since the imaginary part of the S-wave amplitude of K−d
scattering at threshold is not changed, using the results of
ref. [11] we obtain

fK
−d

0 (0) = (− 0.47± 0.07) + i (0.52± 0.08) fm. (2.28)

This gives the energy level displacement for the ground
state of kaonic deuterium equal to ref. [11]:

− ε1s + i
Γ1s
2

= 601.56 fK
−d

0 (0)

= (− 283± 42) + i (315± 48) eV. (2.29)
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Table 1. Theoretical values of cross-sections for inelastic channels of K−p scattering. The laboratory momentum of the incident
K−-meson is measured in MeV/c and the cross-sections in mb.

plab 70 80 90 100 110 120 130 140 150 160 170

σΣ−π+ 83.1 72.3 64.1 57.8 52.8 48.7 45.3 42.5 40.1 38.1 36.3

σΣ+π− 36.9 32.1 28.4 25.6 23.4 21.6 20.0 18.8 17.7 16.8 16.0

σΣ0π0 60.9 52.9 46.9 42.2 38.5 35.5 33.0 31.0 29.2 27.7 26.4

σΛ0π0 12.8 11.1 9.8 8.8 8.0 7.3 6.8 6.3 5.9 5.6 5.3

The value of the S-wave amplitude of K−d scattering at
threshold as well as of the energy level displacement of
the ground state of kaonic deuterium agree well with the
results obtained in ref. [11].

3 Cross-sections for low-energy K−p

scattering

In this section we apply our model of strong K−N inter-
actions at threshold to the description of the experimental
data on the cross-sections for the reactions K−p → K−p
and K−p → Y π, where Y π = Σ∓π±, Σ0π0 and Λ0π0,
as functions of a laboratory momentum plab of the in-
cident K−-meson. The available experimental data of
the cross-sections are given for the laboratory momenta
50MeV/c ≤ plab ≤ 250MeV/c [28]. This corresponds to
relative momenta 40MeV/c ≤ k ≤ 200MeV/c of the K−p
pair.

We analyse the cross-sections for the reactions K−p→
K−p and K−p → Y π only for the laboratory momenta
70MeV/c ≤ plab ≤ 150MeV/c of the incident K−, where
the experimental data are most reliable. For these mo-
menta the S-wave amplitudes of the inelastic reactions
K−p → Y π are described well by the S-wave scattering
lengths

f(K−p→ Σ−π+) = aΣ−π+ = +0.43 fm ,

f(K−p→ Σ+π−) = aΣ+π− = +0.28 fm ,

f(K−p→ Σ0π0) = aΣ0π0 = +0.36 fm ,

f(K−p→ Λ0π0) = aΛ0π0 = − 0.14 fm . (3.1)

For laboratory momenta 70MeV/c ≤ plab ≤ 150MeV/c,
due to smallness of the S-wave scattering lengths aY π, the
cross-sections are equal to

σΣ−π+(k) = 4π
kΣ−π+(k)

k
C2
0 (k) a

2
Σ−π+ ,

σΣ+π−(k) = 4π
kΣ+π−(k)

k
C2
0 (k) a

2
Σ+π− ,

σΣ0π0(k) = 4π
kΣ0π0(k)

k
C2
0 (k) a

2
Σ0π0 ,

σΛ0π0(k) = 4π
kΛ0π0(k)

k
C2
0 (k) a

2
Λ0π0 , (3.2)

where C2
0 (k) is the contribution of the Coulomb interac-

tion of the K−p pair

C2
0 (k) =

2παµ

k

1

1− e− 2παµ/k
. (3.3)

The cross-sections for inelastic channels agree well with
those obtained in refs. [29,30] (see also ref. [31])). The cal-
culation of the cross-sections eq. (3.2), taking into account
the Coulomb interaction in the initial and final state, one
can carry out within the potential model approach with
strong low-energy interactions described by the effective
zero-range potential [32]:

V (~r ) = −2π

µ
aY π δ

(3)(~r ), (3.4)

where aY π is a S-wave scattering length of the inelas-
tic channel under consideration. The S-wave amplitude

f(~k,~kY π) of the inelastic channel K−p → Y π is defined
by the spatial integral

f(~k,~kY π) = −
µ

2π

∫

d3x e− i~kY π · ~rV (~r )ψ C
K−p(

~k, ~r ) =

= aY π e
π/2kaB Γ (1− i/kaB). (3.5)

Here ψ C
K−p(

~k, ~r ) is the exact non-relativistic Coulomb

wave function of the relative motion of the K−p pair in
the incoming scattering state with a relative momentum
~k. It is given by [33]

ψCK−p(
~k, ~r ) = e π/2kaB Γ (1− i/kaB)

×e i~k · ~r F (i/kaB , 1, ikr − i~k · ~r ), (3.6)

where F (i/kaB , 1, ikr − i~k · ~r ) is the confluent hypergeo-
metric function [33,34].

The numerical values of the theoretical cross-sections
for the reactions K−p→ Σ−π+, K−p→ Σ+π−, K−p→
Σ0π0 and K−p → Λ0π0, calculated for the experimental
values of the masses of interacting hadrons [5], are ad-
duced in table 1 and the experimental data are given in
table 2 [35] and table 3 [36]. The cross-sections as functions
of the laboratory momentum of the incident K−-meson
are represented in fig. 1. It is seen that theoretical cross-
sections agree with experimental data within two standard
deviations.

For the S-wave scattering length aΛ0π0 = − 0.14 fm
of the inelastic K−p → Λ0π0 reaction we calculate the
S-wave phase shift of Λπ scattering at threshold of the

K̄N pair δΛ
0π0

S = aΛ0π0kΛ0π0 = − 10.30. This agrees well
with recent results obtained by Tandean et al. [37] (see
their fig. 3 and take the value of the phase shift of Λπ
scattering at threshold of the K̄N pair production).
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Table 2. Experimental data on the cross-sections for the re-
actions K−p → Σ−π+ and K−p → Σ+π−. The laboratory
momentum of the incident K−-meson is measured in MeV/c
and the cross-sections in mb.

plab 90–110 110–130 130–150

σΣ−π+ 68± 8 60± 6 46± 4

σΣ+π− 34± 5 23± 4 26± 3

Table 3. Experimental data on the cross-sections for the re-
actions K−p → Σ0π0 and K−p → Λ0π0. The laboratory mo-
mentum of the incident K−-meson is measured in MeV/c and
the cross-sections in mb.

plab 120 160

σΣ0π0 20± 10 15± 7

σΛ0π0 22± 10 15± 3
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Fig. 1. Cross-sections for the inelastic reactions K−p → Y π,
where Y π = Σ−π+, Σ+π−, Σ0π0 and Λ0π0.

Due to a contribution of the pure Coulomb interaction
to the S-wave amplitude of elastic K−p scattering only a
differential cross-section for elastic K−p scattering is well
defined. For the analysis of experimental data the differ-
ential cross-section for elastic K−p scattering has been
taken in the form [31] (see also refs. [29,30])

dσ e`
pK−(k)

dΩ
=

∣

∣

∣

∣

sec2(θ/2)

2k2aB
exp

[

2i

kaB
sin(θ/2)

]

+C2
0 (k)R exp(iα)

∣

∣

∣

∣

2

, (3.7)

where R and α are the experimental fit parameters [31].
For the momenta 100MeV/c ≤ plab ≤ 175MeV/c

the experimental values of the fit parameters, obtained in
ref. [31], are R = (0.81 ± 0.06) fm and α = (78 ± 31)◦. In
our model the theoretical values of these parameters are

equal to R = |aK
−p

0 | = (0.50 ± 0.05) fm and α = 180◦.
However, the experimental values for the cross-section
for elastic K−p scattering, obtained in ref. [38] for mo-
menta 100MeV/c ≤ plab ≤ 160MeV/c, are by a factor

1.5 smaller than the data by Humphrey and Ross [31].
This implies that the parameter R can be reduced to the
value R ≈ 0.67, which agrees better with our prediction.

The cross-sections for elastic and inelastic K−p scat-
tering eq. (3.2), defined for the momenta 70MeV/c ≤
plab ≤ 150MeV/c, do not contradict the theoretical re-
sults obtained by Borasoy et al. [28]. The agreement of
the theoretical predictions for the cross-sections of elastic
and inelastic K−p scattering is qualitative within about
two standard deviations. However, due to self-consistency
of our calculation of the S-wave amplitudes of K−N scat-
tering at threshold and the agreement with the experi-
mental data by the DEAR Collaboration, we can argue
that the experimental values of the cross-sections for elas-
tic and inelastic channels of K−p scattering as well as for
K−n scattering should be remeasured. The same recom-
mendation has been pointed out by Borasoy et al. [28].

4 Conclusion

We have revisited our phenomenological quantum field
theoretic model of strong low-energy K̄N interactions at
threshold. The main change concerns the replacement of
the contribution of the Σ(1750) resonance with quan-

tum numbers I (JP ) = 1 ( 12
−
) by the baryon background

with the same quantum numbers and SU(3) properties.
We remind that according to Gell-Mann’s classification
of hadrons, the Σ(1750) resonance belongs to an SU(3)
octet of baryons. Following our previous analysis of strong
low-energy K̄N interactions [1] and assuming that the
S-wave amplitudes of inelastic channels of K−p scatter-
ing at threshold are fully defined by the contribution of
the Λ(1405) resonance with quantum numbers I (JP ) =

0 ( 12
−
) and the octet of baryon background with JP = 1

2

−

we describe the experimental data on ratios of the cross-
sections for inelastic channels of K−p scattering eq. (1.10)
within an accuracy of about 6%. Since the non-resonant
parts of the S-wave amplitudes are not changed, we have
used them and calculated the complex S-wave scattering
lengths ã00 and ã10 of K̄N scattering with isospin I = 0
and I = 1, given by eq. (2.7). The complex S-wave scat-
tering length ã00 agrees well with that obtained by Dalitz
and Deloff [12].

It is interesting to notice that the complex S-wave scat-
tering length ã00, calculated in our model, does not con-
tradict the result obtained by Akaishi and Yamazaki [39]
under the assumption that the Λ(1405) resonance is the
bound K−p state.

The real parts of the complex S-wave scattering

lengths aK
−p

0 = (a00 + a10)/2 and aK
−n

0 = a10 of K−N
scattering satisfy the low-energy theorem eq. (2.8). As we
have shown above, this low-energy theorem is a K̄N scat-
tering version of the well-known low-energy theorem for
the S-wave scattering lengths of π−N scattering by Wein-
berg [13].

The low-energy theorem eq. (2.8) can be rewritten in
the form of the sum rule eq. (2.13), where the l.h.s. is
defined by quark-hadron interactions, whereas the r.h.s.
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is the resonant part caused by the contribution of the
Λ(1405) resonance A and the baryon background B.
The sum rule eq. (2.13) can be accepted as a manifes-
tation of quark-hadron duality pointed out by Shifman
et al. [17] within non-perturbative QCD in the form of
QCD sum rules.

Since in our model the S-wave scattering lengths are
calculated to leading order in chiral expansion and satisfy
the low-energy theorem eq. (2.8), we can argue that our
model is self-consistent to leading order in chiral expan-
sion. This implies that the inclusion of the contributions
of next-to-leading order corrections in chiral expansion is
well defined and allows to provide the investigation of the
contribution of the σI=1

KN (0)-term to the S-wave scattering
length of K−p and K−d scattering and the energy level
displacements of the ground states of kaonic atoms.

The analysis of the contribution of the σI=1
KN (0)-term

demands the calculation of the quantity, defined by
eq. (2.23),

α3µ3mK

8πF 2
KmN

i

∫

d4x 〈p(~0, σp)|T(J4+i550 (x)J4−i550 (0))|p(~0, σp)〉.

We are planning to carry out this calculation in our forth-
coming publication.

The energy level displacement of the ground state of
kaonic hydrogen eq. (2.14), calculated for the complex S-
wave scattering lengths eq. (2.7), agrees well with the re-
sult obtained in ref. [1] and the experimental data by the
DEAR Collaboration. The account for the contribution
of the dispersive corrections, caused by the intermediate
K̄0n state on-mass shell [18], changes the values of the
energy level shift and width by about 8%.

We have recalculated the S-wave scattering length

aK
−d

0 of K−d scattering for the new values of the S-wave
scattering lengths a00 and a10 obeying the low-energy theo-
rem a00+3 a10 = 0. We have shown that the obtained result
is not changed with respect to that calculated in ref. [11].

For the confirmation of the self-consistency our ap-
proach we have analysed the cross-sections for elastic and
inelastic channels of K−p scattering for laboratory mo-
menta 70MeV/c ≤ plab ≤ 150MeV/c of the incident K−-
meson. We have shown that the cross-sections for the re-
actions K−p → K−p and K−p → Y π, which we have
calculated by using the S-wave amplitudes of elastic and
inelastic channels of K−p scattering at threshold, do not
contradict the experimental data within two standard de-
viations. However, the constraints imposed by recent ex-
perimental data by the DEAR Collaboration demand a
revision of these data.

The energy level displacement of the ground state of
kaonic hydrogen has been analysed in ref. [28] and ref. [40].
The result predicted by Borasoy et al. [28] within the
SU(3) chiral effective Lagrangian approach with relativis-
tic coupled channels technique is equal to

− ε1s+ i
Γ1s
2

= 412.13 fK
−p

0 (0) = − 235+ i 195 eV, (4.1)

where fK
−p

0 (0) = − 0.57+ i 0.47 fm. It has been obtained
as a result of an “optimal” compromise between the var-

ious existing data sets [28]. The energy level displace-
ment of the ground state of kaonic hydrogen, obtained in
ref. [28], agrees with the experimental data by the DEAR
Collaboration within experimental error bars. Our result
for the energy level shift agrees well with that obtained
in ref. [28], whereas the agreement for the values of the
energy level width is only within an accuracy of about
30%.

The energy level displacement of the ground state of
kaonic hydrogen has been calculated by Meißner et al. [40]
under the assumption of the dominant role of the K̄0n-
cusp. Such a hypothesis has been proposed by Dalitz and
Tuan in 1960 [29] (see also ref. [30]) in the K-matrix ap-
proach in the zero-range approximation. Meißner et al.
have argued that the S-wave amplitude

f̃K
−p

0 (0) =

ã00 + ã10
2

+ q0 ã
0
0ã

1
0

1 +
( ã00 + ã10

2

)

q0

, (4.2)

obtained by Dalitz and Tuan within the K-matrix ap-
proach in the zero-range approximation refs. [29,30], can
be derived within a non-relativistic effective Lagrangian
approach based on ChPT by Gasser and Leutwyler [8].

For the complex S-wave scattering lengths eq. (2.7),
the energy level displacement of the ground state of kaonic
hydrogen, caused by the K̄0n-cusp, is equal to

− ε1s+i
Γ1s
2

= 412.13 fK
−p

0 (0) = − 325+ i 248 eV , (4.3)

where fK
−p

0 (0) = − 0.78+ i 0.60 fm. This result agrees well
with the experimental data by the KEK Collaboration [41]

− ε(exp)1s + i
Γ
(exp)
1s

2
= (−323±64)+ i (204±115) eV. (4.4)

Thus, as has been pointed out by Gasser [42]: . . . the the-
ory of K̄p scattering leaves many questions open. More
precise data will reveal whether present techniques are able
to describe the complicated situation properly.

A new set of measurements by the
DEAR/SIDDHARTA Collaborations [3], which is
planned for 2006 year and intended for to reach a
precision of the experimental data on the energy level
displacement of the ground state of kaonic hydrogen and
kaonic deuterium at the eV level, should place constraints
on theoretical approaches to the description of strong
low-energy K̄N interactions at threshold.

We are grateful to Torleif Ericson for reading the manuscript
and helpful comments on the results obtained in the paper.
The remarks and comments by Wolfram Weise are greatly ap-
preciated.
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